Links

Tools

Export citation

Search in Google Scholar

Numerical Simulation of the Heat Transfer Behavior of a Zigzag Plate Containing a Phase Change Material for Combustion Heat Recovery and Power Generation

Journal article published in 2016 by Peilun Wang ORCID, Pengxiang Song, Yun Huang ORCID, Zhijian Peng ORCID, Yulong Ding
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

This study presents a numerical analysis of the melting process of phase change materials (PCMs) within a latent heat thermal energy storage (LHTES) system employing zigzag plate. The numerical model used NaCl-MgCl2 mixture as PCMs and hot air as heat transfer fluid (HTF). An experimental system was built to validate the model, and the experimental data agrees reasonably well with the simulation results. The simulation results revealed the effects of the Reynolds and Stefan numbers and the surface topography of the zigzag plate on the charging process. Besides, the effect of the relationship between Reynolds and Stefan numbers on the charging process under a new boundary condition employing a fixed input power was studied. It is found that by modifying the shape of the zigzag plate surface it is feasible to enhance the heat transfer of the LHTES unit remarkably. The melting rate of PCMs increases with the value of Ste or Re numbers with only one of them changing; however, the melting rate of PCMs decreases with the increasing Ste (or decreasing Re) in a fixed input power condition.