In questo articolo proponiamo l’impiego delle fattorizzazioni matriciali non negative per l’analisi dei dati nell’Educational Data Mining. Il metodo si basa su un processo di decomposizione di un dataset per l’estrazione di informazioni latenti di immediata interpretazione. In particolare, l’applicazione delle fattorizzazioni non negative a score matrix consente di generare in modo automatico le cosiddette question matrix (Q-matrix), che descrivono le abilità necessarie affinché uno studente possa rispondere adeguatamente a questionari di valutazione. Un esempio su dati real-world illustra l’efficacia del metodo.