Published in

Wiley, International Journal of Cancer, 6(131), p. 1277-1286, 2012

DOI: 10.1002/ijc.27395

Links

Tools

Export citation

Search in Google Scholar

Chemoprevention of mouse lung and colon tumors by suberoylanilide hydroxamic acid and atorvastatin

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Atorvastatin and suberoylanilide hydroxamic acid (SAHA) were evaluated for chemoprevention of mouse lung tumors. In Experiment 1, lung tumors were induced by vinyl carbamate in strain A/J mice followed by 500 mg/kg SAHA, 60 or 180 mg/kg atorvastatin, and combinations containing SAHA and atorvastatin administered in their diet. SAHA and both combinations, but not atorvastatin, decreased the multiplicity of lung tumors, including large adenomas and adenocarcinomas with the combinations demonstrating the greatest efficacy. In Experiment 2, lung tumors were induced by 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanol in strain A/J mice followed by 180 mg/kg atorvastatin, 500 mg/kg SAHA, or both drugs administered in the diet. SAHA and the combination of both drugs, but not atorvastatin alone, decreased the multiplicity of lung tumors and large tumors, with the combination demonstrating greater efficacy. In Experiment 3, lung tumors were induced by 1,2-dimethylhydrazine in Swiss-Webster mice followed by 160 mg/kg atorvastatin, 400 mg/kg SAHA, or a combination of both drugs administered in the diet. SAHA and the combination, but not atorvastatin, decreased the multiplicity of lung tumors with the combination demonstrating greater efficacy. The multiplicity of colon tumors was decreased by SAHA, atorvastatin, and the combination, without any significant difference in their efficacy. mRNA expression analysis of lung tumor bearing mice suggested that the enhanced chemopreventive activity of the combination is related to atorvastatin modulation of DNA repair, SAHA modulation of angiogenesis, and both drugs modulating invasion and metastasis pathways. Atorvastatin demonstrated chemoprevention activity as indicated by the enhancement of the efficacy of SAHA to prevent mouse lung tumors.