Published in

Wiley Open Access, FASEB Journal, 5(28), p. 1975-1987, 2014

DOI: 10.1096/fj.13-233445

Links

Tools

Export citation

Search in Google Scholar

Does reversible cysteine oxidation link the Western diet to cardiac dysfunction?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Using a novel cysteine thiol labeling strategy coupled with mass spectrometric analysis, we identified and quantified the changes in global reversible cysteine oxidation of proteins in the left ventricle of hearts from mice with metabolic syndrome-associated diastolic dysfunction. This phenotype was induced by feeding a high-fat, high-sucrose, type-2 diabetogenic diet to C57BL/6J mice for 8 mo. The extent of reversible thiol oxidation in relationship to the total available (free and reducible) level of each cysteine could be confidently determined for 173 proteins, of which 98 contained cysteines differentially modified ≥1.5-fold by the diet. Our findings suggest that the metabolic syndrome leads to potentially deleterious changes in the oxidative modification of metabolically active proteins. These alterations may adversely regulate energy substrate flux through glycolysis, β-oxidation, citric acid (TCA) cycle, and oxidative phosphorylation (oxphos), thereby contributing to maladaptive tissue remodeling that is associated with, and possibly contributing to, diastolic left ventricular dysfunction.—Behring, J. B., Kumar, V., Whelan, S. A., Chauhan, P., Siwik, D. A., Costello, C. E., Colucci, W. S., Cohen, R. A., McComb M. E., Bachschmid, M. M. Does reversible cysteine oxidation link the Western diet to cardiac dysfunction?