Published in

Wiley, Journal of Geophysical Research. Space Physics, 12(121), p. 11,750-11,765

DOI: 10.1002/2016ja022568

Links

Tools

Export citation

Search in Google Scholar

The 2π charged particles analyzer: All-sky camera concept and development for space missions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Increasing the temporal resolution and instant coverage of velocity space of space plasma measurements is one of the key issues for experimentalists. Today the top-hat plasma analyzer appears to be the favorite solution due to its relative simplicity and the possibility to extend its application by adding a mass-analysis section and an electrostatic angular scanner. Similarly, great success has been achieved in MMS mission using such multiple top-hat analyzers to achieve unprecedented temporal resolution.An instantaneous angular coverage of charged particles measurements is an alternative approach to pursuing the goal of high time resolution. This was done with FONEMA 4-D and, to a lesser extent, by DYMIO instruments for Mars-96 and with the FIPS instrument for MESSENGER mission. In this paper we describe, along with precursors, a plasma analyzer with a 2π electrostatic mirror that was developed originally for the Phobos-Soil mission with a follow-up in the frame of the BepiColombo mission, and is under development for future Russian missions. Different versions of instrument are discussed along with their advantages and drawbacks.