Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Journal of Applied Physics, 12(120), p. 123110

DOI: 10.1063/1.4963367

Links

Tools

Export citation

Search in Google Scholar

Near-field imaging of single walled carbon nanotubes emitting in the telecom wavelength range

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Hybrid systems based on carbon nanotubes emitting in the telecom wavelength range and Si-photonic platforms are promising candidates for developing integrated photonic circuits. Here, we consider semiconducting single walled carbon nanotubes (s-SWNTs) emitting around 1300 nm or 1550 nm wavelength. The nanotubes are deposited on quartz substrate for mapping their photoluminescence in hyperspectral near-field microscopy. This method allows for a sub-wavelength resolution in detecting the spatial distribution of the emission of single s-SWNTs at room temperature. Optical signature delocalized over several micrometers is observed, thus denoting the high quality of the produced carbon nanotubes on a wide range of tube diameters. Noteworthy, the presence of both nanotube bundles and distinct s-SWNT chiralities is uncovered.