Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 44(105), p. 17187-17192, 2008

DOI: 10.1073/pnas.0808207105

Links

Tools

Export citation

Search in Google Scholar

The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Transcriptional control of metabolic circuits requires coordination between specific transcription factors and coregulators and is often deregulated in metabolic diseases. We characterized here the mechanisms through which the coactivator SRC-3 controls energy homeostasis. SRC-3 knock-out mice present a more favorable metabolic profile relative to their wild-type littermates. This metabolic improvement in SRC-3(-/-) mice is caused by an increase in mitochondrial function and in energy expenditure as a consequence of activation of PGC-1alpha. By controlling the expression of the only characterized PGC-1alpha acetyltransferase GCN5, SRC-3 induces PGC-1alpha acetylation and consequently inhibits its activity. Interestingly, SRC-3 expression is induced by caloric excess, resulting in the inhibition of PGC-1alpha activity and energy expenditure, whereas caloric restriction reduces SRC-3 levels leading to enhanced PGC-1alpha activity and energy expenditure. Collectively, these data suggest that SRC-3 is a critical link in a cofactor network that uses PGC-1alpha as an effector to control mitochondrial function and energy homeostasis.