Links

Tools

Export citation

Search in Google Scholar

Cytokine profiles during invasive nontyphoidal Salmonella disease predict outcome in African children.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Nontyphoidal Salmonellae are a leading cause of sepsis in African children. Cytokine responses are central to the pathophysiology of sepsis and predict sepsis outcome in other settings. In this study we investigated cytokine responses to invasive nontyphoidal Salmonella (iNTS) disease in Malawian children. We determined serum concentrations of 48 cytokines with multiplexed immunoassays in Malawian children during acute iNTS disease (n = 111) and in convalescence (n = 77). Principal components analysis and logistic regression were used to identify cytokine signatures of acute iNTS disease. We further investigated whether these responses are altered by HIV co-infection or severe malnutrition, and whether cytokine responses predict inpatient mortality. Cytokine changes in acute iNTS disease were associated with two distinct cytokine signatures. The first is characterized by increased concentrations of mediators known to be associated with macrophage function, and the second by raised pro- and anti-inflammatory cytokines typical of responses reported in sepsis secondary to diverse pathogens. These cytokine responses were largely unaltered by either severe malnutrition or HIV co-infection. Children with fatal disease had a distinctive cytokine profile, characterized by raised mediators known to be associated with neutrophil function. In conclusion, cytokine responses to acute iNTS infection in Malawian children are reflective of both the cytokine storm typical of sepsis secondary to diverse pathogens, and the intra-macrophage replicative niche of NTS. The cytokine profile predictive of fatal disease supports a key role of neutrophils in the pathogenesis of NTS sepsis.