Links

Tools

Export citation

Search in Google Scholar

Damage initiation and progression in the cartilage surface probed by nonlinear optical microscopy.

Journal article published in 2012 by Cp P. Brown, M.-A. Houle, M. Chen, Aj J. Price, F. Légaré, Hs S. Gill ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

With increasing interest in treating osteoarthritis at its earliest stages, it has become important to understand the mechanisms by which the disease progresses across a joint. Here, second harmonic generation (SHG) microscopy, coupled with a two-dimensional spring-mass network model, was used to image and investigate the collagen meshwork architecture at the cartilage surface surrounding osteoarthritic lesions. We found that minor weakening of the collagen meshwork leads to the bundling of fibrils at the surface under normal loading. This bundling appears to be an irreversible step in the degradation process, as the stress concentrations drive the progression of damage, forming larger bundles and cracks that eventually form lesions.