Published in

2016 IEEE International Symposium on Information Theory (ISIT)

DOI: 10.1109/isit.2016.7541539

Links

Tools

Export citation

Search in Google Scholar

Delay-Optimal Computation Task Scheduling for Mobile-Edge Computing Systems

Proceedings article published in 2016 by Khaled Ben letaief, Juan Liu, Yuyi Mao, Khaled B. Letaief, Jun Zhang ORCID, Ieee
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mobile-edge computing (MEC) emerges as a promising paradigm to improve the quality of computation experience for mobile devices. Nevertheless, the design of computation task scheduling policies for MEC systems inevitably encounters a challenging two-timescale stochastic optimization problem. Specifically, in the larger timescale, whether to execute a task locally at the mobile device or to offload a task to the MEC server for cloud computing should be decided, while in the smaller timescale, the transmission policy for the task input data should adapt to the channel side information. In this paper, we adopt a Markov decision process approach to handle this problem, where the computation tasks are scheduled based on the queueing state of the task buffer, the execution state of the local processing unit, as well as the state of the transmission unit. By analyzing the average delay of each task and the average power consumption at the mobile device, we formulate a power-constrained delay minimization problem, and propose an efficient one-dimensional search algorithm to find the optimal task scheduling policy. Simulation results are provided to demonstrate the capability of the proposed optimal stochastic task scheduling policy in achieving a shorter average execution delay compared to the baseline policies.