Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 6(9), p. e100171, 2014

DOI: 10.1371/journal.pone.0100171

Links

Tools

Export citation

Search in Google Scholar

Decreased Fixation Stability of the Preferred Retinal Location in Juvenile Macular Degeneration

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Macular degeneration is the main cause for diminished visual acuity in the elderly. The juvenile form of macular degeneration has equally detrimental consequences on foveal vision. To compensate for loss of foveal vision most patients with macular degeneration adopt an eccentric preferred retinal location that takes over tasks normally performed by the healthy fovea. It is unclear however, whether the preferred retinal locus also develops properties typical for foveal vision. Here, we investigated whether the fixation characteristics of the preferred retinal locus resemble those of the healthy fovea. For this purpose, we used the fixation-offset paradigm and tracked eye-position using a high spatial and temporal resolution infrared eye-tracker. The fixation-offset paradigm measures release from fixation under different fixation conditions and has been shown useful to distinguish between foveal and non-foveal fixation. We measured eye-movements in nine healthy age-matched controls and five patients with juvenile macular degeneration. In addition, we performed a simulation with the same task in a group of five healthy controls. Our results show that the preferred retinal locus does not adopt a foveal type of fixation but instead drifts further away from its original fixation and has overall increased fixation instability. Furthermore, the fixation instability is most pronounced in low frequency eye-movements representing a slow drift from fixation. We argue that the increased fixation instability cannot be attributed to fixation under an unnatural angle. Instead, diminished visual acuity in the periphery causes reduced oculomotor control and results in increased fixation instability.