Links

Tools

Export citation

Search in Google Scholar

Quantum interference in graphene nanoconstrictions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We report quantum interference effects in the electrical conductance of chemical vapour deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multi-mode Fabry-Pérot interferences can be attributed to reflections on potential steps inside the channel. Sharp anti-resonance features with a Fano line shape are observed. Theoretical modelling reveals that these Fano resonances are due to localised states inside the constriction, which couple to the delocalised states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions.