Published in

2010 20th International Conference on Pattern Recognition

DOI: 10.1109/icpr.2010.15

Links

Tools

Export citation

Search in Google Scholar

2D shape recognition using information theoretic kernels

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, a novel approach for contour based 2D shape recognition is proposed, using a class of information theoretic kernels recently introduced. This kind of kernels, based on a non-extensive generalization of the classical Shannon information theory, are defined on probability measures. In the proposed approach, chain code representations are first extracted from the contours; then n-gram statistics are computed and used as input to the information theoretic kernels. We tested different versions of such kernels, using support vector machine and nearest neighbor classifiers. An experimental evaluation on the Chicken pieces dataset shows that the proposed approach significantly outperforms the current state-of-the-art methods.