Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 11(3), p. e3794, 2008

DOI: 10.1371/journal.pone.0003794

Links

Tools

Export citation

Search in Google Scholar

Comprehensive Dissection of PDGF-PDGFR Signaling Pathways in PDGFR Genetically Defined Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Despite the growing understanding of pdgf signaling, studies of pdgf function have encountered two major obstacles: the functional redundancy of PDGFRalpha and PDGFRbeta in vitro and their distinct roles in vivo. Here we used wild-type mouse embryonic fibroblasts (MEF), MEF null for either PDGFRalpha, beta, or both to dissect PDGF-PDGFR signaling pathways. These four PDGFR genetically defined cells provided us a platform to study the relative contributions of the pathways triggered by the two PDGF receptors. They were treated with PDGF-BB and analyzed for differential gene expression, in vitro proliferation and differential response to pharmacological effects. No genes were differentially expressed in the double null cells, suggesting minimal receptor-independent signaling. Protean differentiation and proliferation pathways are commonly regulated by PDGFRalpha, PDGFRbeta and PDGFRalpha/beta while each receptor is also responsible for regulating unique signaling pathways. Furthermore, some signaling is solely modulated through heterodimeric PDGFRalpha/beta.