Published in

Elsevier, Neurobiology of Aging, 2(35), p. 442.e1-442.e8, 2014

DOI: 10.1016/j.neurobiolaging.2013.05.023

Links

Tools

Export citation

Search in Google Scholar

Mitochondrial DNA sequence associations with dementia and amyloid-β in elderly African Americans

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mitochondrial dysfunction occurs early in the course of several neurodegenerative diseases, and is potentially related to increased oxidative damage and amyloid-beta (Abeta) formation in Alzheimer's disease. The goals of this study were to assess mtDNA sequence associations with dementia risk, 10-year cognitive change, and markers of oxidative stress and Abeta among 1089 African-Americans in the population-based Health, Aging, and Body Composition Study. Participants were free of dementia at baseline, and incidence was determined in 187 (18%) cases over 10 to 12 follow-up years. Haplogroup L1 participants were at increased risk for developing dementia (odds ratio = 1.88, 95% confidence interval = 1.23-2.88, p = 0.004), lower plasma Abeta42 levels (p = 0.03), and greater 10-year decline on the Digit Symbol Substitution Test (p = 0.04) when compared with common haplogroup L3. The p.V193I, ND2 substitution was associated with significantly higher Abeta42 levels (p = 0.0012), and this association was present in haplogroup L3 (p = 0.018) but not L1 (p = 0.90) participants. All associations were independent of potential confounders, including APOEepsilon4 status and nuclear genetic ancestry. Identification of mtDNA sequence variation associated with dementia risk and cognitive decline may contribute to the development of new treatment targets and diagnostic tests that identify responders to interventions targeting mitochondria.