Published in

Public Library of Science, PLoS ONE, 2(4), p. e4497, 2009

DOI: 10.1371/journal.pone.0004497

Links

Tools

Export citation

Search in Google Scholar

Respiratory Evolution Facilitated the Origin of Pterosaur Flight and Aerial Gigantism

Journal article published in 2009 by Leon P. A. M. Claessens ORCID, Patrick M. O'Connor, David M. Unwin
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation. ; LC acknowledges funding from the National Science Foundation (IBN 0206169) and Harvard University for cineradiographic experiments. PO would like to thank the Ohio University College of Osteopathic Medicine and the Ohio University Office of Research and Sponsored Programs for support. DU thanks the Deutsche Forschungsgemeinschaft, the University of Leicester and the Humboldt University, Berlin for support. ; 8211