Published in

American Physical Society, Physical review B, 7(89)

DOI: 10.1103/physrevb.89.075417

Links

Tools

Export citation

Search in Google Scholar

Dynamics of spin-flip photon-assisted tunneling :

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present time-resolved measurements of spin-flip photon-assisted tunneling and spin-flip relaxation in a doubly occupied double quantum dot. The photon-assisted excitation rate as a function of magnetic field indicates that spin-orbit coupling is the dominant mechanism behind the spin-flip under the present conditions. We are able to extract the resulting effective “spin-flip tunneling” energy, which is found to be three orders of magnitude smaller than the regular spin-conserving tunneling energy. We also measure the relaxation and dephasing times of a qubit formed out of two two-electron states with different spin and charge configurations.