Published in

American Society for Microbiology, Molecular and Cellular Biology, 3(23), p. 961-974, 2003

DOI: 10.1128/mcb.23.3.961-974.2003

Links

Tools

Export citation

Search in Google Scholar

The Exocytotic Trafficking of TC10 Occurs through both Classical and Nonclassical Secretory Transport Pathways in 3T3L1 Adipocytes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

To examine the structural determinants necessary for TC10 trafficking, localization, and function in adipocytes, we generated a series of point mutations in the carboxyl-terminal targeting domain of TC10. Wild-type TC10 (TC10/WT) localized to secretory membrane compartments and caveolin-positive lipid raft microdomains at the plasma membrane. Expression of a TC10/C206S point mutant resulted in a trafficking and localization pattern that was indistinguishable from that of TC10/WT. In contrast, although TC10/C209S or the double TC10/C206,209S mutant was plasma membrane localized, it was excluded from both the secretory membrane system and the lipid raft compartments. Surprisingly, inhibition of Golgi membrane transport with brefeldin A did not prevent plasma membrane localization of TC10 or H-Ras. Moreover, inhibition of trans-Golgi network exit with a 19°C temperature block did not prevent the trafficking of TC10 or H-Ras to the plasma membrane. These data demonstrate that TC10 and H-Ras can both traffic to the plasma membrane by at least two distinct transport mechanisms in adipocytes, one dependent upon intracellular membrane transport and another independent of the classical secretory membrane system. Moreover, the transport through the secretory pathway is necessary for the localization of TC10 to lipid raft microdomains at the plasma membrane.