Published in

Chemical Engineering Transactions, (32), p. 1861-1866, 2013

DOI: 10.3303/cet1332311

Links

Tools

Export citation

Search in Google Scholar

CO2-mixture properties for pipeline transportation in the CCS process

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Transport is an essential feature of the CCS process as the CO2 quality required for transport may influence the choice of the capture technology and impose limits on the performance requirements. Therefore, to design CO2 transport networks, it is important to have an accurate knowledge of the thermodynamic properties of CO2-mixtures. In this paper the results of different EOS (both cubic equations as Peng-Robinson or Redlich-Kwong-Soave and non-analytical equations as Benedict-Webb-Rubin- Starling, Lee-Kesler or GERG model) have been compared with P-ρ-T experimental data obtained by the authors. The Lee-Kesler equation and the GERG model showed a good prediction of CO2-mixture density in the working conditions of the pipeline transport. Finally, simulations of pipelines that transport pure CO2 and CO2-mixtures have been performed and discussed.