Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 42(113), p. 11688-11693, 2016

DOI: 10.1073/pnas.1602215113

Links

Tools

Export citation

Search in Google Scholar

Stable Aqueous Dispersions of Optically and Electronically Active Phosphorene

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Understanding and exploiting the remarkable optical and electronic properties of phosphorene require mass production methods that avoid chemical degradation. While solution-based strategies have been developed for scalable exfoliation of black phosphorus, these techniques have thus far employed anhydrous organic solvents in an effort to minimize exposure to known oxidants, but at the cost of limited exfoliation yield and flake size distribution. Here, we present an alternative phosphorene production method based on surfactant-assisted exfoliation and post-processing of black phosphorus in deoxygenated water. From comprehensive microscopic and spectroscopic analysis, this approach is shown to yield phosphorene dispersions that are stable, highly concentrated, and comparable to micromechanically exfoliated phosphorene in structure and chemistry. Due to the high exfoliation efficiency of this process, the resulting phosphorene flakes are thinner than anhydrous organic solvent dispersions, thus allowing the observation of layer-dependent photoluminescence down to the monolayer limit. Furthermore, to demonstrate preservation of electronic properties following solution processing, the aqueous-exfoliated phosphorene flakes are employed in field-effect transistors with high drive currents and current modulation ratios. Overall, this method enables the isolation and mass production of few-layer phosphorene, which will accelerate ongoing efforts to realize a diverse range of phosphorene-based applications. ; Comment: 4 figures, 37 pages, including supporting information in Proceedings of the National Academy of Sciences