Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Computers and Mathematics with Applications, 5(66), p. 702-716

DOI: 10.1016/j.camwa.2013.01.028

Links

Tools

Export citation

Search in Google Scholar

Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, a simple parameter switching (PS) methodology is proposed for sustaining the stable dynamics of a fractional-order chaotic financial system. This is achieved by switching a controllable parameter of the system, within a chosen set of values and for relatively short periods of time. The effectiveness of the method is confirmed from a computer-aided approach, and its applications to chaos control and anti-control are demonstrated. In order to obtain a numerical solution of the fractional-order financial system, a variant of the Grünwald–Letnikov scheme is used. Extensive simulation results show that the resulting chaotic attractor well represents a numerical approximation of the underlying chaotic attractor, which is obtained by applying the average of the switched values. Moreover, it is illustrated that this approach is also applicable to the integer-order financial system.