Published in

American Chemical Society, Biochemistry, 49(48), p. 11603-11605, 2009

DOI: 10.1021/bi9017544

Links

Tools

Export citation

Search in Google Scholar

Heme Iron Nitrosyl Complex of MauG Reveals an Efficient Redox Equilibrium Between Hemes with Only One Heme Exclusively Binding Exogenous Ligands

Journal article published in 2009 by Rong Fu, Fange Liu ORCID, Victor L. Davidson, Aimin Liu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

MauG is a diheme enzyme that oxidizes two protein-bound tryptophan residues to generate a catalytic tryptophan tryptophylquinone cofactor within methylamine dehydrogenase. Upon the two-electron oxidation of bis-ferric MauG, the two c-type hemes exist as a spin-uncoupled bis-Fe(IV) species with only one binding oxygen, which is chemically equivalent to a single ferryl heme plus a pi porphyrin cation radical ( Li , X. et al. ( 2008 ) Proc. Natl. Acad. Sci. U.S.A. 105 , 8597 - 8600 ). The EPR spectrum of the nitrosyl complex of fully reduced MauG shows a single six-coordinate Fe(II)-NO species, which is characteristic of a histidine-ligated Fe(II)-NO moiety in the heme environment. Exposure of partially reduced MauG to NO reveals a redox equilibrium with facile electron transfer between hemes but with only one binding nitric oxide. Thus, the second heme is able to stabilize all three redox states of iron (Fe(II), Fe(III), and Fe(IV)) in a six-coordinate protein-bound heme without binding exogenous ligands. This is unprecedented behavior for a protein-bound heme for which each of these redox states is relevant to the overall catalytic mechanism. The results also illustrate the electronic communication between the two iron centers, which function as a diheme unit rather than independent heme cofactors.