Published in

American Chemical Society, Biochemistry, 30(48), p. 7296-7304, 2009

DOI: 10.1021/bi900098s

Links

Tools

Export citation

Search in Google Scholar

PROTON BRIDGING IN THE INTERACTIONS OF THROMBIN WITH SMALL INHIBITORS†

Journal article published in 2009 by Ildiko M. Kovach, Paul Kelley, Carol Eddy, Frank Jordan, Ahmet Baykal ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Thrombin is the pivotal serine protease enzyme in the blood cascade system. Phe-Pro-Arg-chloromethylketone (PPACK), phosphate, and phosphonate ester inhibitors form a covalent bond with the active-site Ser of thrombin. PPACK, a mechanism-based inhibitor, and the phosphate/phosphonate esters form adducts that mimic intermediates formed in reactions catalyzed by thrombin. Therefore, the dependence of the inhibition of human alpha-thrombin on the concentration of these inhibitors, pH, and temperature was investigated. The second-order rate constant (ki/Ki) and the inhibition constant (Ki) for inhibition of human alpha-thrombin by PPACK are (1.1 +/- 0.2) x 10(7) M(-1) s(-1) and (2.4 +/- 1.3) x 10(-8) M, respectively, at pH 7.00 in 0.05 M phosphate buffer and 0.15 M NaCl at 25.0 +/- 0.1 degrees C, in good agreement with previous reports. The activation parameters at pH 7.00 in 0.05 M phosphate buffer and 0.15 M NaCl are as follows: DeltaH = 10.6 +/- 0.7 kcal/mol, and DeltaS = 9 +/- 2 cal mol(-1) degrees C(-1). The pH dependence of the second-order rate constants of inhibition is bell-shaped. Values of pKa1 and pKa2 are 7.3 +/- 0.2 and 8.8 +/- 0.3, respectively, at 25.0 +/- 0.1 degrees C. A phosphate and a phosphonate ester inhibitor gave higher values, 7.8 and 8.0 for pKa1 and 9.3 and 8.6 for pKa2, respectively. They inhibit thrombin more than 6 orders of magnitude less efficiently than PPACK does. The deuterium solvent isotope effect for the second-order rate constant at pH 7.0 and 8.3 at 25.0 +/- 0.1 degrees C is unity within experimental error in all three cases, indicating the absence of proton transfer in the rate-determining step for the association of thrombin with the inhibitors, but in a 600 MHz 1H NMR spectrum of the inhibition adduct at pH 6.7 and 30 degrees C, a peak at 18.10 ppm with respect to TSP appears with PPACK, which is absent in the 1H NMR spectrum of a solution of the enzyme between pH 5.3 and 8.5. The peak at low field is an indication of the presence of a short-strong hydrogen bond (SSHB) at the active site in the adduct. The deuterium isotope effect on this hydrogen bridge is 2.2 +/- 0.2 (phi = 0.45). The presence of an SSHB is also established with a signal at 17.34 ppm for a dealkylated phosphate adduct of thrombin.