Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Materials, 41(26), p. 7122-7127, 2014

DOI: 10.1002/adma.201401991

Links

Tools

Export citation

Search in Google Scholar

Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A study was conducted to demonstrate that high photocurrent densities of more than 22 mAcm-2 can be attained by utilizing CsSnI 3 as an absorber in solid state perovskite solar cells. Photovoltaic devices with the configuration FTO/compact TiO2 / mesoporous TiO2 /CsSnI3/HTM/Au were prepared. CsSnI3 layers were spin coated on to -300 nm thick mesoporous layers. Two HTMs ? 4, 4', 4''-tris (N,N-phenyl-3-methylamino) triphenylamine (m-MTDATA) and Spiro-OMeTAD were employed for this study. Using DMF and 2-methoxyethanol as solvents for the CsSnI3 resulted in the formation of large islands on the TiO2 scaffold, with significant areas of exposed TiO2.Pristine CsSnI3 as the light absorber does not result in a functional photovoltaic device while compositions with added SnF2, display photovoltaic effect. The unprecedented short circuit photocurrents observed from a pure Sn-based perovskite system reflect the enhanced light harvesting in the infrared region of the solar spectrum.