Background : Integrated PET/MRI with hyperpolarized 13C magnetic resonance spectroscopic imaging (13C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented for a clinical whole-body system using simultaneous 1H-MRI and PET but never for 13C-MRSI and PET. Here, the feasibility of simultaneous PET and 13C-MRSI as well as hyperpolarized 13C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. ; Methods : Combined PET and 13C-MRSI phantoms including a NEMA [18F]-FDG phantom, 13C-acetate and 13C-urea sources, and hyperpolarized 13C-pyruvate were imaged repeatedly with PET and/or 13C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET trues; and 13C-MRSI signal-to-noise ratio (SNR) for urea and acetate phantoms. Differences between measurement conditions were evaluated using t tests. ; Results : PET and 13C-MRSI data acquisition could be performed simultaneously without any discernible artifacts. The average difference in PET activity between acquisitions with and without simultaneous 13C-MRSI was 0.83 (largest sphere) and −0.76 % (background). The average difference in net trues was −0.01 %. The average difference in 13C-MRSI SNR between acquisitions with and without simultaneous PET ranged from −2.28 to 1.21 % for all phantoms and measurement conditions. No differences were significant. The system was capable of 13C-MRSI of hyperpolarized 13C-pyruvate. ; Conclusions : Simultaneous PET and 13C-MRSI in an integrated whole-body PET/MRI hybrid scanner is feasible. Phantom experiments showed that possible interference effects introduced by acquiring data from the two modalities simultaneously are small and non-significant. Further experiments can now investigate the benefits of simultaneous PET and hyperpolarized 13C-MRI in vivo studies.