Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep24206

Links

Tools

Export citation

Search in Google Scholar

Real-time estimation of wildfire perimeters from curated crowdsourcing

Journal article published in 2016 by Xu Zhong, Matt Duckham ORCID, Derek Chong, Kevin Tolhurst
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractReal-time information about the spatial extents of evolving natural disasters, such as wildfire or flood perimeters, can assist both emergency responders and the general public during an emergency. However, authoritative information sources can suffer from bottlenecks and delays, while user-generated social media data usually lacks the necessary structure and trustworthiness for reliable automated processing. This paper describes and evaluates an automated technique for real-time tracking of wildfire perimeters based on publicly available “curated” crowdsourced data about telephone calls to the emergency services. Our technique is based on established data mining tools and can be adjusted using a small number of intuitive parameters. Experiments using data from the devastating Black Saturday wildfires (2009) in Victoria, Australia, demonstrate the potential for the technique to detect and track wildfire perimeters automatically, in real time and with moderate accuracy. Accuracy can be further increased through combination with other authoritative demographic and environmental information, such as population density and dynamic wind fields. These results are also independently validated against data from the more recent 2014 Mickleham-Dalrymple wildfires.