Published in

SAGE Publications, Cancer Informatics, (15), p. CIN.S33014, 2016

DOI: 10.4137/cin.s33014

Links

Tools

Export citation

Search in Google Scholar

Integrative Analysis of mRNA, microRNA, and Protein Correlates of Relative Cerebral Blood Volume Values in GBM Reveals the Role for Modulators of Angiogenesis and Tumor Proliferation

Journal article published in 2016 by Arvind Rao, Ganiraju Manyam ORCID, Rajan Jain, Ganesh Rao
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dynamic susceptibility contrast-enhanced magnetic resonance imaging is routinely used to provide hemodynamic assessment of brain tumors as a diagnostic as well as a prognostic tool. Recently, it was shown that the relative cerebral blood volume (rCBV), obtained from the contrast-enhancing as well as -nonenhancing portion of glioblastoma (GBM), is strongly associated with overall survival. In this study, we aim to characterize the genomic correlates (microRNA, messenger RNA, and protein) of this vascular parameter. This study aims to provide a comprehensive radiogenomic and radioproteomic characterization of the hemodynamic phenotype of GBM using publicly available imaging and genomic data from the Cancer Genome Atlas GBM cohort. Based on this analysis, we identified pathways associated with angiogenesis and tumor proliferation underlying this hemodynamic parameter in GBM.