Published in

Trans Tech Publications, Materials Science Forum, (852), p. 1188-1193

DOI: 10.4028/www.scientific.net/msf.852.1188

Links

Tools

Export citation

Search in Google Scholar

PGA Fiber Reinforced Calcium Aluminate Cement for Orthopaedic Application

Journal article published in 2016 by Yan Ni Tan, Liu Yong, Xiang He, Wen Wang, Dong Duan, Kai Yang Li, Hui Xia Li, Lan Luo
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Calcium aluminate cement (CAC) is a penitential candidate for bone replacements with good bioactivity but relative lower strength. In this study, biodegradable PGA fiber was incorporated into the CAC paste in order to improve the strength of the material. And MC3T3 cells were seeded on the surface of CAC and CAC/fiber to study their in vitro biocompatibility. The results indicate that the PGA fiber can improve the compressive strength of CAC without changing the crystalline phases and micromorphology. Calcium aluminate oxide hydrate, katoite and Gibbsite crystals were detected by XRD. Plate-like crystals can be observed under FESEM. The MC3T3 cells were attached well on both CAC and CAC/fiber composite, indicating their good in vitro biocompatibility. In summary, fiber reinforcement can be an effective way to improve the properties of calcium aluminate cement for orthopaedic application.