Dissemin is shutting down on January 1st, 2025

Published in

EMBO Press, The EMBO Journal, 1(26), p. 265-274

DOI: 10.1038/sj.emboj.7601482

Links

Tools

Export citation

Search in Google Scholar

Reversible movement of switch 1 loop of myosin determines actin interaction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The conserved switch 1 loop of P-loop NTPases is implicated as a central element that transmits information between the nucleotide-binding pocket and the binding site of the partner proteins. Recent structural studies have identified two states of switch 1 in G-proteins and myosin, but their role in the transduction mechanism has yet to be clarified. Single tryptophan residues were introduced into the switch 1 region of myosin II motor domain and studied by rapid reaction methods. We found that in the presence of MgADP, two states of switch 1 exist in dynamic equilibrium. Actin binding shifts the equilibrium towards one of the MgADP states, whereas ATP strongly favors the other. In the light of electron cryo-microscopic and X-ray crystallographic results, these findings lead to a specific structural model in which the equilibrium constant between the two states of switch 1 is coupled to the strength of the actin–myosin interaction. This has implications for the enzymatic mechanism of G-proteins and possibly P-loop NTPases in general.