Published in

Wiley, Immunology, 0(0), p. 060608033622005-???, 2006

DOI: 10.1111/j.1365-2567.2006.02393.x

Links

Tools

Export citation

Search in Google Scholar

Role of peroxisome proliferator-activated receptor-alpha in acute pancreatitis induced by cerulein

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors related to retinoid, steroid and thyroid hormone receptors. The aim of the present study was to examine the effects of endogenous PPAR-alpha ligand on the development of acute pancreatitis caused by cerulein in mice. Intraperitoneal injection of cerulein into PPAR-alpha wild-type (WT) mice resulted in severe, acute pancreatitis characterized by oedema, neutrophil infiltration and necrosis and by elevated serum levels of amylase and lipase. Infiltration of pancreatic and lung tissue with neutrophils (measured as an increase in myeloperoxidase activity) was associated with enhanced expression of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and P-selectin. Immunohistochemical examination demonstrated a marked increase in the staining (immunoreactivity) for transforming growth factor-beta (TGF-beta) and vascular endothelial growth factor (VEGF) in the pancreas of cerulein-treated PPAR-alpha wild-type (WT) mice in comparison to sham-treated mice. Acute pancreatitis in PPAR-alphaWT mice was also associated with a significant mortality (20% survival at 5 days after cerulein administration). In contrast, the degree of pancreatic inflammation and tissue injury (histological score), up-regulation/formation of ICAM-1 and P-selectin, infiltration of neutrophils, and the expression of TGF-beta and VEGF was markedly enhanced in pancreatic tissue obtained from cerulein-treated PPAR-alpha knockout (KO) mice. Thus, endogenous PPAR-alpha ligands reduce the degree of pancreas injury caused by acute pancreatitis induced by cerulein administration.