Published in

Elsevier, Composites Part B: Engineering, (61), p. 282-290

DOI: 10.1016/j.compositesb.2014.01.056

Links

Tools

Export citation

Search in Google Scholar

Damage evolution under cyclic multiaxial stress state: A comparative analysis between glass/epoxy laminates and tubes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work an experimental investigation on damage initiation and evolution in laminates under cyclic loading is presented. The stacking sequence [0/θ2/0/−θ2]s has been adopted in order to investigate the influence of the local multiaxial stress state in the off-axis plies and the possible effect of different thickness between the thin (2-plies) and the thick (4-plies) layers. Results are presented in terms of S–N curves for the initiation of the first cracks, crack density evolution, stiffness degradation and Paris-like curves for the crack propagation phase. The values of the off-axis angle θ has been chosen in order to obtain local multiaxial stress states in the off-axis plies similar to those in previous studies for biaxially loaded tubes. Results concerning damage initiation and growth for these two specimen configurations are shown to be consistent for similar local multiaxial stress states.