Published in

Wiley, Genetic Epidemiology, S1(33), p. S51-S57, 2009

DOI: 10.1002/gepi.20473

Links

Tools

Export citation

Search in Google Scholar

Machine learning in genome-wide association studies

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recently, genome-wide association studies have substantially expanded our knowledge about genetic variants that influence the susceptibility to complex diseases. Although standard statistical tests for each single-nucleotide polymorphism (SNP) separately are able to capture main genetic effects, different approaches are necessary to identify SNPs that influence disease risk jointly or in complex interactions. Experimental and simulated genome-wide SNP data provided by the Genetic Analysis Workshop 16 afforded an opportunity to analyze the applicability and benefit of several machine learning methods. Penalized regression, ensemble methods, and network analyses resulted in several new findings while known and simulated genetic risk variants were also identified. In conclusion, machine learning approaches are promising complements to standard single-and multi-SNP analysis methods for understanding the overall genetic architecture of complex human diseases. However, because they are not optimized for genome-wide SNP data, improved implementations and new variable selection procedures are required. Genet. Epidemiol . 33 (Suppl. 1):S51???S57, 2009. ?? 2009 Wiley-Liss, Inc.