Published in

Elsevier, International Journal of Hydrogen Energy

DOI: 10.1016/j.ijhydene.2016.03.002

Links

Tools

Export citation

Search in Google Scholar

Efficient modeling of metallic interconnects for thermo-mechanical simulation of SOFC stacks: Homogenized behaviors and effect of contact

Journal article published in 2016 by Tesfaye Tadesse Molla, Kawai Kwok ORCID, Henrik Lund Frandsen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Currently thermo-mechanical analysis of the entire solid oxide fuel cell (SOFC) stack at operational conditions is computationally challenging if the geometry of metallic interconnects is considered explicitly. This is particularly the case when creep deformations in the interconnect are considered in addition to elasticity. In this work, this problem is addressed using homogenization, whereby the effect of the geometry is build into an effective anisotropic material law for a continuum block of material, which then represents the interconnect in the stack model. The study presents a finite element model to calculate the homogenized mechanical response of corrugated metallic interconnects at high temperatures.Thereafter, a constitutive law for the homogenized structure (effective material law) is developed. In order to properly describe the mechanical behavior of the interconnect at high temperature, deformations involving the elastic, creep as well as effect of changes in the geometry due to contact should be accounted for. The constitutive law can be applied using 3D modeling, but for simple presentation of the theory, 2D plane strain formulation is used to model the corrugated metallic interconnect. Finally, the developed constitutive law is verified by comparing its predictions for creep strain with results from the original 2D finite element model for different loading conditions. The constitutive law is found to satisfactorily describe the mechanical behavior of corrugated metallic interconnect with computational feasibility and significant speed gain.