Published in

SAGE Publications, Foot & Ankle International, 3(34), p. 392-397, 2013

DOI: 10.1177/1071100712465738

Links

Tools

Export citation

Search in Google Scholar

Lateral Column Length in Adult Flatfoot Deformity

Journal article published in 2013 by Steve Kang, Timothy P. Charlton, David B. Thordarson
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Introduction: In adult acquired flatfoot deformity, it is unclear whether the lateral column length shortens with progression of the deformity, whether it is short to begin with, or whether it is short at all. To our knowledge, no previous study has examined the lateral column length of patients with adult acquired flatfoot deformity compared to a control population. The purpose of our study was to compare the lateral column length in patients with and without adult acquired flatfoot deformity to see if there was a significant difference. Methods: The study was a retrospective radiographic review of 2 foot and ankle fellowship-trained orthopaedic surgeons’ patients with adult flatfoot deformity. Our study population consisted of 75 patients, 85 feet (28 male, 57 female) with adult flatfoot deformity with a mean age of 64 (range, 23-93). Our control population consisted of 57 patients and 70 feet (23 male, 47 female) without flatfoot deformity with a mean age of 61 (range, 40-86 years). Weightbearing anteroposterior (AP) and lateral foot radiographs were analyzed for each patient, and the following measurements were made: medial and lateral column lengths, talonavicular uncoverage angle, talus-first metatarsal angle, calcaneal pitch angle, and medial and lateral column heights. An unpaired t test was used to analyze the measurements between the groups. Ten patients’ radiographs were remeasured, and correlation coefficients were obtained to assess the reliability of the measuring techniques. Results: For the flatfoot group, the mean medial and lateral column lengths on the AP radiograph were 108.6 mm and 95.8 mm, respectively; the mean talo-navicular uncoverage angle was 26.2 degrees; and the mean talus-first metatarsal angle was 20.0 degrees. In the control group, the mean medial and lateral column lengths on the AP radiograph were 108.8 mm and 96.5 mm, respectively; the mean talo-navicular uncoverage angle was 8.2 degrees; and the mean talus-first metatarsal angle was 7.7 degrees. On the lateral radiograph in the flatfoot group, the mean medial and lateral column lengths were 167.2 mm and 166.6 mm, respectively; the mean medial and lateral column heights were 16.0 mm and 14.7 mm, respectively; the mean calcaneal pitch angle was 15.6 degrees; and the talus-first metatarsal angle was 10.3 degrees and for the control group, the mean medial and lateral column lengths were 165.3 mm and 163.5 mm, respectively; the mean medial and lateral column heights were 22.8 mm and 13.1 mm, respectively; the mean calcaneal pitch angle was 22.4 degrees; and the talus-first metatarsal angle was −3.6 degrees. None of the differences in measurements for medial and lateral column lengths between the flatfoot and control groups achieved statistical significance. However, statistically significant differences between the 2 groups were observed in the measurements for medial and lateral column heights, talo-navicular uncoverage angle, calcaneal pitch angle, and talus-first metatarsal angle. Conclusion: There is no difference in lateral column lengths between patients with and without adult flatfoot deformity. The perceived shortened lateral column is likely due to forefoot abduction and hindfoot valgus deformities that are associated with adult flatfoot deformity. Level of Evidence: Level III, comparative series.