Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9), p. 3050-3059, 2016

DOI: 10.1109/jstars.2016.2533441

Links

Tools

Export citation

Search in Google Scholar

Mitigating Ionospheric Artifacts in Coseismic Interferogram Based on Offset Field Derived From ALOS-PALSAR Data

Journal article published in 2016 by Bochen Zhang, Xiaoli Ding ORCID, Wu Zhu, Chisheng Wang, Lei Zhang, Zhizhao Liu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Ionospheric total electron content (TEC) disturbances can seriously influence the signal of low-frequency spaceborne synthetic aperture radar (SAR) systems, e.g., Advanced Land Observation Satellite (ALOS)-phased array-type L-band synthetic aperture radar (PALSAR). With regard to coseismic studies using interferometric synthetic aperture radar (InSAR), it is vital to mitigate the ionospheric artifacts in the contaminated coseismic interferogram. In this paper, we propose a new method for the integral constant calculation, and we then aim to improve the estimation of the ionospheric phase screen (IPS). The proposed method is based on both azimuth and range displacement field maps. At present, the azimuth displacement field can be generated by an offset-tracking procedure or multiple-aperture InSAR (MAI), but the range displacement field can only be estimated by an offset-tracking procedure. We applied ALOS-PALSAR data that were acquired before and after the 2008 Wenchuan earthquake and the 2010 Darfield earthquake to test the proposed method. This case study further showed that ionospheric azimuth streaks were clearly visible in the azimuth displacement field maps of these two cases, one of which was generated using the MAI algorithm and the other using an offset-tracking algorithm. The results confirmed that the long-wavelength ionospheric artifacts in the non-coseismic regions could be corrected by the use of the proposed method. The line-of-sight (LOS) displacement corrections of these two cases, Wenchuan and Darfield, were in the range of -35.9 to 21.0 cm and -6.6 to 10.0 cm along the LOS direction, respectively. ; Department of Land Surveying and Geo-Informatics