Published in

American Heart Association, Hypertension, 2(58), p. 225-231, 2011

DOI: 10.1161/hypertensionaha.111.170266

Links

Tools

Export citation

Search in Google Scholar

Heme Oxygenase 1 Is Differentially Involved in Blood Flow–Dependent Arterial Remodeling

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Heme oxygenase 1 is induced by hemodynamic forces in vascular smooth muscle and endothelial cells. We investigated the involvement of heme oxygenase 1 in flow (shear stress)-dependent remodeling. Two or 14 days after ligation of mesenteric resistance arteries, vessels were isolated. In rats, at 14 days, diameter increased by 23% in high-flow arteries and decreased by 22% in low-flow arteries compared with normal flow vessels. Heme oxygenase activity inhibition using Tin-protoporphyrin abolished diameter enlargement in high-flow arteries and accentuated arterial narrowing in low-flow arteries (32% diameter decrease versus 22% in control). Two days after ligation, heme oxygenase 1 expression increased in high-flow and low-flow vessels, in association with a reduced mitochondrial aconitase activity (marker of oxidative stress) in high-flow arteries only. Inhibition of macrophage infiltration (clodronate) decreased heme oxygenase 1 induction in low-flow but not in high-flow arteries. Similarly, inhibition of NADPH oxidase activity (apocynin) decreased heme oxygenase 1 induction in low-flow but not high-flow arteries. However, dihydroethidium staining was higher in high-flow and low-flow compared with normal flow arteries. In arteries cannulated in an arteriograph, heme oxygenase 1 mRNA increased in a flow-dependent manner and was abolished by N G -nitro- l -arginine methyl ester, catalase, or mitochondrial electron transport chain inhibition. Furthermore, heme oxygenase 1 induction using cobalt-protoporphyrin restored altered high-flow remodeling in endothelial NO synthase knockout mice. Thus, in high-flow remodeling, heme oxygenase 1 induction depends on shear stress–generated NO and mitochondria-derived hydrogen peroxide. In low-flow remodeling, heme oxygenase 1 induction requires macrophage infiltration and is mediated by NADPH oxidase–derived superoxide.