Published in

American Heart Association, Circulation: Arrhythmia and Electrophysiology, 6(5), p. 1098-1107, 2012

DOI: 10.1161/circep.111.969972

Links

Tools

Export citation

Search in Google Scholar

A Novel Disease Gene for Brugada Syndrome

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background— Mutations in genes including SCN5A encoding the α-subunit of the cardiac sodium channel (hNav1.5) cause Brugada syndrome via altered function of cardiac ion channels, but more than two-thirds of Brugada syndrome remains pathogenetically elusive. T-tubules and sarcoplasmic reticulum are essential in excitation of cardiomyocytes, and sarcolemmal membrane-associated protein (SLMAP) is a protein of unknown function localizing at T-tubules and sarcoplasmic reticulum. Methods and Results— We analyzed 190 unrelated Brugada syndrome patients for mutations in SLMAP . Two missense mutations, Val269Ile and Glu710Ala, were found in heterozygous state in 2 patients but were not found in healthy individuals. Membrane surface expression of hNav1.5 in the transfected cells was affected by the mutations, and silencing of mutant SLMAP by small interfering RNA rescued the surface expression of hNav1.5. Whole-cell patch-clamp recordings of hNav1.5-expressing cells transfected with mutant SLMAP confirmed the reduced hNav1.5 current. Conclusions— The mutations in SLMAP may cause Brugada syndrome via modulating the intracellular trafficking of hNav1.5 channel.