Dissemin is shutting down on January 1st, 2025

Published in

World Scientific Publishing, Journal of Porphyrins and Phthalocyanines, 10(13), p. 1082-1089, 2009

DOI: 10.1142/s1088424609001340

Links

Tools

Export citation

Search in Google Scholar

Electron transfer and oxidase activities in reconstituted hemoproteins with chemically modified cofactors

Journal article published in 2009 by Takashi Matsuo, Takashi Hayashi ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Protoheme IX is a typical iron porphyrin cofactor, showing a variety of reactivities in many hemoproteins under the reaction environments provided by protein matrices. Chemical modification of the protoheme cofactor is expected to be a versatile strategy to design hemoproteins possessing unique functions. This review focuses on the conversion of a hemoprotein, mainly myoglobin (an oxygen-storage hemoprotein), into a protein having different functions from the original ones by replacement of the protoheme cofactor with synthetic cofactors. The myoglobin having anionic patches pended to the heme propionates effectively binds electron-accepting proteins or small cationic organic molecules on the protein surface, resulting in enhanced efficiency of the photoinduced electron transfers from the myoglobin to these electron acceptors. Furthermore, the peroxidase and peroxygenase activities are also enhanced due to the facile substrate accesses. The attachment of the chemically active moiety such as flavin at the heme terminal is also important to give P450-like function to the native myoglobin. The employment of a structural isomer of porphyrin as an artificial cofactor gives rise to remarkably high dioxygen affinity and peroxidase activity in myoglobin, and allows us to easily detect high-valent species of the porphyrin isomer in HRP. These examples provide a clear insight into hemoprotein modifications based on synthetic chemistry as well as genetic amino acid mutations.