Published in

World Scientific Publishing, International Journal of Computational Methods, 01(08), p. 19-39

DOI: 10.1142/s0219876211002393

Links

Tools

Export citation

Search in Google Scholar

Modeling Thermophysical Properties of Noble Gas Involved Mixtures

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The present work involves in determining isotropic and effective pair potential energy of binary gas mixtures of Kr–Xe , Kr–C2H6 , Xe–C2H6 , Kr–C3H8 , and Xe–C3H8 from thermophysical properties consisting of viscosity and second virial coefficients through inversion method. Typically, the calculated intermolecular potential energy of Kr–Xe system has compared with HFD model potential reported in literature. A desirable harmony between our model potential and HFD model has been obtained. In order to assess the potential energies obtained, transport properties including viscosity, diffusion, thermal diffusion factor, and thermal conductivity of aforementioned mixtures were predicted using the calculated models potential. The deviation percentage of the calculated viscosity and thermal conductivity of above-mentioned mixtures from the literature values are, respectively, within ±2%, ±3%.