Published in

World Scientific Publishing, Journal of Theoretical and Computational Chemistry, 04(05), p. 913-924

DOI: 10.1142/s0219633606002702

Links

Tools

Export citation

Search in Google Scholar

Conformational Analysis of Nevirapine in Solutions Based on Nmr Spectroscopy and Quantum Chemical Calculations

Journal article published in 2006 by V. Vailikhit, P. Bunsawansong, S. Techasakul, S. Hannongbua ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The conformational analysis of HIV-1 Reverse Transcriptase Inhibitor, nevirapine, 11-cyclopropyl-5,-11dihydro-4-methyl-6H-dipyrido[3,2-b2′,3′-e][1,4]diazepin-6-one, was investigated using ab initio and density functional theory calculations. The fully optimized structures and rotational potential energies of the nitrogen and carbon bonds in the cyclopropyl ring (C15-N11-C17-C19, α) were examined in detail. Geometries obtained from all applied calculations show similarities to the complex structure with HIV-1 reverse transcriptase. To obtain more information on the structure, conformational minima of nevirapine, optimized at the B3LYP/6-31G** level, were calculated for the 1H, 13C, and 15N-NMR chemical shifts at the B3LYP/6-311++G** level using the GIAO approach in DMSO and chloroform IEFPCM solvation models. The calculated 1H, 13C-NMR chemical shifts agree well with the experimental data, which indicates that the geometry of nevirapine in solution is similar to that of the molecule in the inhibition complex. Solvation free energies (ΔG sol ) of nevirapine in DMSO and chloroform were also obtained.