Published in

World Scientific Publishing, Modern Physics Letters B, 15(22), p. 1497-1505

DOI: 10.1142/s0217984908016212

Links

Tools

Export citation

Search in Google Scholar

MAGNETIC PROPERTIES AND INDUCTION HEATING OF NiZn FERRITE NANOPARTICLES

Journal article published in 2008 by Qigang Jiao, Yi Zhang, Ya Zhai ORCID, Xiaojun Bai, Wei Zhang, Jun Du, Hongru Zhai
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of nanoparticle powders of Ni x Zn 1-x Fe 2 O 4 (x = 0, 0.30, 0.40, 0.50, 0.55, 0.60, 0.70 and 1.0) ferrites was synthesized by the refluxing method at relatively low temperatures. The average size of nanoparticles is about 20 nm. The magnetic properties and induction heating behavior were investigated. On increasing the Ni content, x, from 0 to 0.50, the saturation magnetization and permeability increased, and then decreased with further increasing Ni content with the bulk Ni – Zn ferrite. The maximum value of magnetization was about 50 emu/g near x = 0.50, where the induction heating rate and induction heating final temperature of the ferrite-water suspension also showed maximum values. The specific absorption rate obtained from the initial induction heating rate curve was found to be linearly proportional to the square of the alternating magnetic field, which is roughly consistent with the theoretical power loss of magnetic materials in the alternating field.