Published in

World Scientific Publishing, International Journal of Modern Physics B, 24n25(15), p. 3279-3286

DOI: 10.1142/s0217979201007622

Links

Tools

Export citation

Search in Google Scholar

Dynamics of Cremona Maps From Physical Models

Journal article published in 2001 by W. Schwalm, B. Moritz ORCID, M. Schwalm
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A Cremona transformation X=f(x, y), Y=g(x, y) is a rational mapping (meaning that f and g are ratios of polynomials) with rational inverse x=F(X, Y), y=G(X, Y). Discrete dynamical systems defined by such transformations are well studied. They include symmetries of the Yang-Baxter equations and their generalizations. In this paper we comment on two types of dynamical systems based on Cremona transformations. The first is the P1 case of Bellon et al. which pertains to the inversion relation for the matrix of Boltzmann weights of the 4-state chiral Potts model. The resulting dynamical system decouples completely to one in a single variable. The sub case z=x corresponds to the symmetric Ashkin-Teller model. We solve this case explicitly giving orbits as closed formulas in the number n of iterations. The second type of system treated is an extension from the famous example due to McMillan of invariant curves of area preserving maps in two dimensions to the case of invariant curves and surfaces of three dimensional Cremona maps that preserve volume. The trace map of the renormalization of transmission through a Fibonacci chain, first introduced by Kohmoto, Kadanoff and Tang, is considered as an example of such a system.