Published in

Frontiers Media, Frontiers in Physiology, (1)

DOI: 10.3389/fphys.2010.00129

Links

Tools

Export citation

Search in Google Scholar

Identification of Zebrafish Fxyd11a Protein that is Highly Expressed in Ion-Transporting Epithelium of the Gill and Skin and its Possible Role in Ion Homeostasis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

FXYD proteins, small single-transmembrane proteins, have been proposed to be auxiliary regulatory subunits of Na(+)-K(+)-ATPase and have recently been implied in ion osmoregulation of teleost fish. In freshwater (FW) fish, numerous ions are actively taken up through mitochondrion-rich cells (MRCs) of the gill and skin epithelia, using the Na(+) electrochemical gradient generated by Na(+)-K(+)-ATPase. In the present study, to understand the molecular mechanism for the regulation of Na(+)-K(+)-ATPase in MRCs of FW fish, we sought to identify FXYD proteins expressed in MRCs of zebrafish. Reverse-transcriptase PCR studies of adult zebrafish tissues revealed that, out of eight fxyd genes found in zebrafish database, only zebrafish fxyd11 (zfxyd11) mRNA exhibited a gill-specific expression. Double immunofluorescence staining showed that zFxyd11 is abundantly expressed in MRCs rich in Na(+)-K(+)-ATPase (NaK-MRCs) but not in those rich in vacuolar-type H(+)-transporting ATPase. An in situ proximity ligation assay demonstrated its close association with Na(+)-K(+)-ATPase in NaK-MRCs. The zfxyd11 mRNA expression was detectable at 1 day postfertilization, and its expression levels in the whole larvae and adult gills were regulated in response to changes in environmental ionic concentrations. Furthermore, knockdown of zFxyd11 resulted in a significant increase in the number of Na(+)-K(+)-ATPase-positive cells in the larval skin. These results suggest that zFxyd11 may regulate the transport ability of NaK-MRCs by modulating Na(+)-K(+)-ATPase activity, and may be involved in the regulation of body fluid and electrolyte homeostasis.