Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Methods, 2(8), p. 153-158, 2011

DOI: 10.1038/nmeth.1555

Links

Tools

Export citation

Search in Google Scholar

Real-time multimodal optical control of neurons and muscles in freely-behaving Caenorhabditis elegans

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The ability to optically excite or silence specific cells using optogenetics has provided a powerful tool to interrogate the nervous system. Optogenetic experiments in small organisms have mostly been performed using whole-field illumination and genetic targeting, but these strategies do not always provide adequate cellular specificity. Targeted illumination can be a valuable alternative but to date it has only been shown in non-moving animals without the ability to observe behavior output. We present a real-time multimodal illumination technology that allows both tracking and recording the behavior of freely moving Caenorhabditis elegans while stimulating specific cells that express Channelrhodopsin-2 or MAC. We use this system to optically manipulate nodes within the C. elegans touch circuit and study the roles of sensory and command neurons and the ultimate behavioral output. This technology significantly enhances our ability to control, alter, observe, and investigate how neurons, muscles, and circuits ultimately produce behavior in animals using optogenetics.