Published in

Nature Research, Scientific Reports, 1(2), 2012

DOI: 10.1038/srep00283

Links

Tools

Export citation

Search in Google Scholar

Cell-Sized confinement in microspheres accelerates the reaction of gene expression

Journal article published in 2012 by Ayako Kato, Miho Yanagisawa, Yuko T. Sato, Kei Fujiwara, Kenichi Yoshikawa ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Cell-sized water-in-oil droplet covered by a lipid layer was used to understand how lipid membranes affect biochemical systems in living cells. Here, we report a remarkable acceleration of gene expression in a cell-sized water-in-oil droplet entrapping a cell-free translation system to synthesize GFP (green fluorescent protein). The production rate of GFP (V(GFP)) in each droplet remained almost constant at least for on the order of a day, which implies 0(th)-order reaction kinetics. Interestingly, V(GFP) was inversely proportional to radius of droplets (R) when R is under 50 μm, and V(GFP) in droplets with R ∼ 10 μm was more than 10 times higher than that in the bulk. The acceleration rates of GFP production in cell-sized droplets strongly depended on the lipid types. These results demonstrate that the membrane surface has the significant effect to facilitate protein production, especially when the scale of confinement is on the order of cell-size.