Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics D: Applied Physics, 36(43), p. 365002, 2010

DOI: 10.1088/0022-3727/43/36/365002

Links

Tools

Export citation

Search in Google Scholar

Magnetic reversal in ion-irradiated FePt thin films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Previous work on ion irradiation control of FePt thin film magnetic anisotropy is extended to ultrathin films (2–10 nm). The effects of 30 keV He ion irradiation on the magnetic properties are explored as a function of ion fluence and film thickness. Depending on their growth conditions, the thinnest films exhibit different magnetic properties. Although this affects their final magnetic behaviour, we show that after irradiation at 300 °C the easy magnetization axis may rotate entirely from in-plane to out-of-plane at very low fluences, e.g. 2 × 1013 He+ cm−2 on 5 nm thick film. This demonstrates the extreme sensitivity of the magnetic anisotropy to ion-induced local L10 ordering. Under these conditions, ultrathin films may exhibit perfectly square hysteresis loops with 100% remanent magnetization and low coercivity.