Dissemin is shutting down on January 1st, 2025

Published in

American Heart Association, Arteriosclerosis, Thrombosis, and Vascular Biology, 4(36), p. 608-617, 2016

DOI: 10.1161/atvbaha.115.307136

Links

Tools

Export citation

Search in Google Scholar

Hypoxia-Inducible Factor-Prolyl 4-Hydroxylase-2 Inhibition Protects Against Development of Atherosclerosis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objective— Small-molecule hypoxia-inducible factor prolyl 4-hydroxylase (HIF-P4H) inhibitors are being explored in clinical studies for the treatment of anemia. HIF-P4H-2 (also known as PHD2 or EglN1) inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. We studied here whether HIF-P4H-2 inhibition could also protect against atherosclerosis. Approach and Results— Atherosclerosis development was studied in low-density lipoprotein (LDL) receptor–deficient mice treated with an oral HIF-P4H inhibitor, FG-4497, and in HIF-P4H-2-hypomorphic/C699Y-LDL receptor–mutant mice, all mice being fed a high-fat diet. FG-4497 administration to LDL receptor–deficient mice reduced the area of atherosclerotic plaques by ≈50% when compared with vehicle-treated controls and also reduced their weight gain, insulin resistance, liver and white adipose tissue (WAT) weights, adipocyte size, number of inflammation-associated WAT macrophage aggregates and the high-fat diet–induced increases in serum cholesterol levels. The levels of atherosclerosis-protecting circulating autoantibodies against copper-oxidized LDL were increased. The decrease in atherosclerotic plaque areas correlated with the reductions in weight, serum cholesterol levels, and WAT macrophage aggregates and the autoantibody increase. FG-4497 treatment stabilized HIF-1α and HIF-2α and altered the expression of glucose and lipid metabolism and inflammation-associated genes in liver and WAT. The HIF-P4H-2-hypomorphic/C699Y-LDL receptor–mutant mice likewise had a ≈50% reduction in atherosclerotic plaque areas, reduced WAT macrophage aggregate numbers, and increased autoantibodies against oxidized LDL, but did not have reduced serum cholesterol levels. Conclusions— HIF-P4H-2 inhibition may be a novel strategy for protecting against the development of atherosclerosis. The mechanisms involve beneficial modulation of the serum lipid profile and innate immune system and reduced inflammation.