Published in

American Chemical Society, ACS Nano, 6(5), p. 4981-4986, 2011

DOI: 10.1021/nn201083j

Links

Tools

Export citation

Search in Google Scholar

Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report intense upconversion photoluminescence (PL) in colloidal LiYF(4):Er(3+) nanocrystals under excitation with telecom-wavelength at 1490 nm. The intensities of two- and three-photon anti-Stokes upconversion PL bands are higher than or comparable to that of the Stokes emission under excitation with low power density in the range 5-120 W/cm(2). The quantum yield of the upconversion PL was measured to be as high as ∼1.2 ± 0.1%, which is almost 4 times higher than the highest upconversion PL quantum yield reported to date for lanthanide-doped nanocrystals in 100 nm sized hexagonal NaYF(4):Yb(3+)20%, Er(3+)2% using excitation at ∼980 nm. A power dependence study revealed that the intensities of all PL bands have linear dependence on the excitation power density, which was explained by saturation effects in the intermediate energy states.