Published in

Future Medicine, Pharmacogenomics, 3(17), p. 259-275, 2016

DOI: 10.2217/pgs.15.172

Links

Tools

Export citation

Search in Google Scholar

CYP450 genotype and pharmacogenetic association studies: a critical appraisal

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Despite strong pharmacological support, association studies using genotype-predicted phenotype as a variable have yielded conflicting or inconclusive evidence to promote personalized pharmacotherapy. Unless the patient is a genotypic poor metabolizer, imputation of patient's metabolic capacity (or metabolic phenotype), a major factor in drug exposure-related clinical response, is a complex and highly challenging task because of limited number of alleles interrogated, population-specific differences in allele frequencies, allele-specific substrate-selectivity and importantly, phenoconversion mediated by co-medications and inflammatory co-morbidities that modulate the functional activity of drug metabolizing enzymes. Furthermore, metabolic phenotype and clinical outcomes are not binary functions; there is large intragenotypic and intraindividual variability. Therefore, the ability of association studies to identify relationships between genotype and clinical outcomes can be greatly enhanced by determining phenotype measures of study participants and/or by therapeutic drug monitoring to correlate drug concentrations with genotype and actual metabolic phenotype. To facilitate improved analysis and reporting of association studies, we propose acronyms with the prefixes ‘g’ (genotype-predicted phenotype) and ‘m’ (measured metabolic phenotype) to better describe this important variable of the study subjects. Inclusion of actually measured metabolic phenotype, and when appropriate therapeutic drug monitoring, promises to reveal relationships that may not be detected by using genotype alone as the variable.