Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Nanotechnology, 1(20), p. 015604

DOI: 10.1088/0957-4484/20/1/015604

Links

Tools

Export citation

Search in Google Scholar

Hierarchically organized nanostructured TiO2for photocatalysis applications

Journal article published in 2008 by F. Di Fonzo ORCID, C. S. Casari, V. Russo, M. F. Brunella, A. Li Bassi, C. E. Bottani
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A template-free process for the synthesis of nanocrystalline TiO2 hierarchical microstructures by reactive pulsed laser deposition (PLD) is here presented. By a proper choice of deposition parameters a fine control over the morphology of TiO2 microstructures is demonstrated, going from classical compact/columnar films to a dense forest of distinct hierarchical assemblies of ultrafine nanoparticles (<10 nm), up to a more disordered, aerogel-type structure. Correspondingly, the film density varies with respect to bulk TiO2 anatase, with a degree of porosity going from 48% to over 90%. These structures are stable with respect to heat treatment at 400 degrees C, which results in crystalline ordering but not in morphological changes down to the nanoscale. Both as deposited and annealed films exhibit very promising photocatalytic properties, even superior to standard Degussa-P25 powder, as demonstrated by the degradation of stearic acid as a model molecule. The observed kinetics are correlated to the peculiar morphology of the PLD grown material. We show that the 3D multiscale hierarchical morphology enhances reaction kinetics and creates an ideal environment for mass transport and photon absorption, maximizing the surface area-to-volume ratio while at the same time providing readily accessible porosity through the large inter-tree spaces that act as distributing channels. The reported strategy provides a versatile technique to fabricate high aspect ratio 3D titania microstructures through a hierarchical assembly of ultrafine nanoparticles. Beyond photocatalytic and catalytic applications, this kind of material could be of interest for those applications where high surface-to-volume and efficient mass transport are required at the same time.